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A B S T R A C T

Studies of protein modules in a Protein-Protein Interaction (PPI) network contribute greatly to the under-
standing of biological mechanisms. With the development of computing science, computational approaches
have played an important role in locating protein modules. In this paper, a new approach combining Gene
Ontology and amino acid background frequency is introduced to detect the protein modules in the weighted PPI
networks. The proposed approach mainly consists of three parts: the feature extraction, the weighted graph
construction and the protein complex detection. Firstly, the topology-sequence information is utilized to present
the feature of protein complex. Secondly, six types of the weighed graph are constructed by combining PPI
network and Gene Ontology information. Lastly, protein complex algorithm is applied to the weighted graph,
which locates the clusters based on three conditions, including density, network diameter and the included
angle cosine. Experiments have been conducted on two protein complex benchmark sets for yeast and the
results show that the approach is more effective compared to five typical algorithms with the performance of f-
measure and precision. The combination of protein interaction network with sequence and gene ontology data is
helpful to improve the performance and provide a optional method for protein module detection.

1. Introduction

Modularity is a ubiquitous phenomenon in various network systems
(Lorenz et al., 2011). A biological network manifests a modular
organization and consists of different functional modules. Much of a
cell's activity is organized as a network composed of lots of the
interacting modules (Chen et al., 2014; Segal et al., 2003), and altering
the connections between the different modules may affect changes in
cellular properties and functions. A protein module, composed of inter-
dependencies of proteins, is a group of proteins giving rise to the
target-specific function whose function is separable from those of other
modules (Sharma et al., 2015). Since biologists have found that cellular
functions and biochemical events are coordinately carried out by each
other in protein modules, and the modular structure of a complex
network is critical to functions, identifying such functional modules (or
complexes) in PPI networks is of utmost importance as it assists in
understanding the structural and functional properties of a biological
network and also aids in describing the evolutionary orthology signal.
Moreover, it is proposed that a disease is a result of the breakdown of a
particular functional module (Barabási et al., 2011), and it has been

demonstrated that the modular structure is of great significance in
aiding the diagnosis, prevention, and therapy of deadly diseases,
especially in cancer research (Segal et al., 2004; Thiagalingam,
2006). Recently a novel concept of modular pharmacology (MP) has
emerged (Wang et al., 2012) in pharmacological research. Therefore,
based on the above reasons, it is extremely important and necessary to
identify functional modules in networks.

In the recent past, a variety of classic clustering approaches, such as
density-based clustering (Adamcsek et al., 2006; Altaf-Ul-Amin et al.,
2006; Bader and Hogue, 2003), hierarchical clustering (Arnau et al.,
2005; Holme et al., 2003; 2010), partition-based clustering, (King
et al., 2004; Pfeiffer and Pfeiffer, 2007) and flow simulation-based
clustering (Cho et al., 2007; Enright et al., 2002; Pereira‐Leal et al.,
2002), have been introduced to identify protein complexes from
protein interaction data. In recent years, a number of new approaches
(Hwang et al., 2008; Inoue et al., 2010; Lecca and Re, 2015; Nepusz
et al., 2012; Wu et al., 2009; Yu et al., 2015), utilizing some novel
computational models to identify protein modules in a PPI network,
has been emerging. Especially, the sources of other biological informa-
tion have been recently employed to the detection of protein modules
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in PPI networks (Andreopoulos et al., 2009; Feng et al., 2010; Kouhsar
et al., 2016; Lakizadeh et al., 2015; Li et al., 2015; Maraziotis et al.,
2007). Though using computational approaches to detect protein
functional modules in PPI networks has received considerable atten-
tion and researchers have proposed many detection ideas and schemes
over the past few years, how to efficiently identify protein modules by
means of multiple sources of biological information is still a vital and
challenging scientific problem in computational biology.

Based on author's knowledge, there are few methods based on the
primary sequence information in the feature selection in the weighted
PPI network constructed from the gene ontology information. Thus, in
this paper inspired by this observation, we present a novel algorithm
called CSeq-GO (Combining Sequence and Gene Ontology for Protein
Module Detection) to discover protein complexes from the weighted
PPI network. The proposed algorithm consists of mainly three parts:
weighted graph construction, feature selection and protein module
detection. Moreover, the included angle cosine as the similarity
measure is introduced to locate protein complex based on the sequence
biological information. The topological properties are based on the fact
that proteins are relatively connected densely in the complex (Bader
and Hogue, 2003) and protein amino acid background frequency is
virtually the axiomatic fact that “sequence specifies structure,” which
gives rise to an assumption that knowledge of the amino acid sequence
might be sufficient to estimate the interacting property between two
proteins for a specific biological function. Therefore, the topological
and biological features are both of considerable importance for a
complex. This algorithm is helpful to capture more biological clusters
and experiments conducted on the two public datasets show that the
proposed algorithm outperforms five state-of-the-art clustering algo-
rithms in terms of f-measure and precision.

2. Material and methods

In this part, the protein complex detection is described in detail.
PPI network can be represented as an undirected weighted graph G
=(V, E), where V is the nodes set, corresponding with proteins, E is the
set of weighted edges, representing interactions between pairs of
proteins. In CSeq-GO, the input is the weighted PPI graph and complex
is considered as a subgraph in the whole PPI network, which represents
a subset of nodes with a specific set of edges connecting among them.

2.1. The weighted graph construction

It is argued that the detection of protein complexes can greatly be
improved by taking into account network weights globally (Nepusz
et al., 2012). In this paper, gene ontology is employed to construct the
weighted graph. Gene Ontology (GO) is a comprehensive resource
across species describing gene and gene product biological properties
related to biological process, molecular function, and cellular compo-
nent. It provides us with promising ways to characterize the functional
relationship between pairs of proteins and to infer the interaction
between them at functional level (Consortium, 2004; Zhang and Tang,
2016).

The reliability of protein interactions is computed by the definition
that qualifies the functional correlation of two proteins using Gene
Ontology(GO) annotations based on semantic similarity, which has
been used in information science to evaluate the similarity between two
concepts in a taxonomy (Resnik, 1995). We use semantic similarity to
construct the weighted graph based on the gene ontology and protein
interaction information.

In this section, the PPI network is transformed into a weighted
graph based on gene ontology information, where the weights are
computed by the BMA (best-match) strategy of Lin's method (Lin,
1998) by utilizing the tool of FastSemSim. The attribution to each
interaction reflects the degree of confidence and represents the
confidence level and the related equations are in (1–3).

sim A B MAX sim t t( , ) = ( ( , ))MAX t GO A t GO B∈ ( ), ∈ ( ) 1 21 2 (1)

sim A B AVG sim t t( , ) = ( ( , ))AVG t GO A t GO B∈ ( ), ∈ ( ) 1 21 2 (2)

sim A B
AVG MAX sim t t AVG MAX sim t t

( , ) =
( ( , )) + ( ( , ))

2BMA
t t t t1 2 1 21 2 2 1

(3)

2.2. Feature selection

The topological features of this paper mainly include the density
and the diameter of the subgraph. The density is used based on the
theory that proteins of complex in the internal parts links more closely
than the external part. The subgraph diameter is selected based on
small world characteristics of the network (Chakrabarti, 2005). Based
on my previous study (Yu et al., 2013), the biological characteristics of
the background frequency of the amino acids is introduced as the
biological characteristic.

(1) Density: Node degree is the sum of the edge weight for a node v.
Cluster density is defined in (5).

∑dg w w e( ) = ( )w
e u v E=( , )∈ (4)

den G
w e

V V
( ) =

2* ∑ ( )
( *( − 1))w

e E∈

(5)

V is the number of vertexes and w e( ) is the weight of the edge e in a
cluster.
(2) Network diameter: Network diameter is the number of links in the

shortest path between the furthest pair of nodes of a cluster.
(3) Amino acid background frequency: As for biological properties,

amino acid background frequency is proposed and calculated in
each subgraph and is defined in (6).
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Where Ci is a kind of amino acid among twenty amino acids, sum C( )i is
the count of this amino acid Ci appearing in a subgraph, len p∑ ( )k

s
k=1 is

the sum of each protein amino acid sequence length in a subgraph, s is
the size of subgraph.
(4) The included angle cosine (Yu et al., 2011): The included angle

cosine value θcos measures the intrinsic similarity between two
interaction proteins, which is introduced in our method based on
the fact that proteins in the same complex have intrinsic similarity.
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(7)

where n (n=20) is the size of the vector V x x x= ( , , ... , )n1 2 for back-
ground frequency, xim and xjm are the mth value of the vector
V x x x= ( , , ... , )i i i in1 2 from protein i and the vector V x x x= ( , , ... , )j j j jn1 2
from protein j.

2.3. Algorithm description

Our detection part operates mainly in three stages: seed selection,
cluster update and a key stage of update judgment. When a cluster is
detected in this stage, the cluster is restricted by θcos , density and
diameter, which is defined in (8). As we know, the larger the value of
cosine is, means the more similarity between proteins. If a node v
satisfies the following constraint condition at the same time in (8), v
will be added to this cluster (subgraph). Usually, density λ≥ and λ is
typically set as 0.7 in Refs (King et al., 2004) and diameter≤2 are
adopted (Li et al., 2008). The algorithm flow and the description are
shown in Fig. 1 and Fig. 2.
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diameter δ and density λ and θ u u≤ ≥ cos ≥ , ∈ [01] (8)

3. Results

3.1. Datasets

Two reference datasets with size no less than 4 are built from hand-
curated complexes, one is from Wodaklab CYC2008 (Pu et al., 2009),
the other is from MIPS (Mewes et al., 2008). The PPI network about
yeast is from DIP (Xenarios et al., 2002) (the Database of Interacting
Proteins) data. Gene ontology data includes an ontology file and a
Saccharomyces (Genome Database SGD) of the yeast gene database.

3.2. Evaluation criteria

Given a set of real complexes R and a set of predicted clusters P, the
detected clusters are expected to match with the known complexes in
the benchmark dataset by the similarity score, which is calculated

between a detected cluster and a known complex in (9):

ω C
P R

=
*i j

2

(9)

Here, C is the size of the interaction set between the detected cluster Pi
and the known complex Rj, Pi is the size of detected cluster and Rj is
the size of known complex. In (Chen et al., 2014; Wu et al., 2009), a
detected cluster is assumed to match a known complex if its over-
lapping score is at least 0.2, which is also adopted in this study.

For comparison, recall, precision and f-measure are adopted, recall
and precision (Li et al., 2010; Lin, 1998; project; Wu et al., 2009) are
defined in (10) and (11):

recall
R R R P P PmatchesR

R
=

{ | ∈ ∧ ∃ ∈ , }j j i i j

(10)

precision
P P P R R R matchesP

P
=

{ | ∈ ∧ ∃ ∈ , }i i j j i

(11)

F-measure (Chen et al., 2014; Li et al., 2010), as the harmonic
mean of precision and recall, can be used to evaluate the overall
performance in (12):

f measure recall precison
recall precison

− = 2* *
+ (12)

3.3. The effect of θcos on clustering

In terms of molecular functions, biological process and cellular
location, three types of the weighted graphs are constructed, namely
BMA_CC, BMA_BP and BMA_MF. In addition, in order to show the
efficiency of our method, three kinds of weighted graphs, BMA/CC,
BMA/PP, BMA/MF, are built with the IPI-excluded in GO terms. To
understand how the value of θcos influences the outcome of the
clustering, we generate 20 sets of clusters by using density ≥ 0.7 and
diameter≤2 with θcos =0.1, 0.2,…, 1.0 from the BMA/BP, BMABP,
BMA/CC, BMACC , BMA/MF and BMAMF weighted graph and the
effect on recall, with different θcos is given in Fig. 3 and Fig. 4.

Fig. 3 and Fig. 4 shows that the performances of recall are
increasing as θcos increases and that there is almost no difference
for the recall performance by density ≥ 0.7 and diameter≤2 when θcos
=0.8,0.9,1.0. Moreover, we can observe that the number of the matched
known complexes keeps almost the same when θcos =0.8, 0.9, 1.0 and
the probability of neighbors added to the cluster is decreasing. More

Fig. 1. Representation for Protein Complexes Detection.

Fig. 2. The algorithm for protein complex detection.
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Fig. 3. Recall performance on CYC2008.
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known complexes are matched by using the weighted graph BMA/BP
than by using BMA_BP with the same θcos when it is larger than 0.8.
The same trends also exist between BMA/CC and BMA_CC, and
between BMA/MF and BMA_MF. In fact, we focus on the actual
usefulness of the algorithm in detecting clusters which match real
complexes reasonably well. Therefore, the results indicate that our
method is helpful to mine the real complexes.

3.4. Evaluation among the methods

Based on the algorithm mentioned above, this part mainly focuses
on BMA strategy for the experimental analysis by using BMACC ,
BMABP, BMAMF . BMA/CC, BMA/PP, and BMA/MF to present the
six kinds of weighted graph. In this part, u = 0.8 is used for perfor-
mance comparison. CFinder (Adamcsek et al., 2006), MCODE (Bader
and Hogue, 2003), MCL (Dongen, 2001), COACH (Wu et al., 2009) and
L (Ahn et al., 2010) are compared with our proposed method and two
groups of identification results are tested among in the two complex
datasets in Table 1, Fig. 5 and Fig. 6. Taking into account the actual
biological meaning for the distribution of the real complexes, the size of
the protein complex between 4 and 80 is used. Based on the results
from Table 1, Fig. 5 and Fig. 6, three advantages are showed as follows:

Firstly, in Table 1, the performance comparison between the three
weighted graphs and the three IPI-excluded weighted graphs shows
that the IPI information is moved off and the number of the located
cluster in BMA/BP is less than that in BMA_BP. Moreover, we can find
that both Pm and Km in BMP/BP are more than those in BMP_BP and
the same trend can be found when we compare between BMA/CC and

BMA_CC, and between BMA/MF and BMA_MF.
Secondly, it can be found that the method based on MF (molecular

function) and the method based on BP (biological processes) has
similar performances in the aspects of the recall rate. In precision and
f-measure metrics: the performance of the weighted graph algorithm
based on the molecular function is significantly better than the other
two types of the weighted graph methods.

Lastly, our method can match more real protein complexes and has
better performances than CFinder, MCODE and MCL, except methods
COACH and L, which may be caused that COACH detects protein
complex in two stages: core complex and attachment complex, which is
different from our method and L merges cliques based upon their
topological features, which may contains overlap complexes. It is
illustrated in Fig. 5 and in Fig. 6 that our method can achieve mostly
better performance on precision, which means that the some noise data
maybe be removed by combining sequence and gene ontology informa-
tion. Comparative results can be seen from the performance of f-
measure and show that our method has better overall performance
than other methods. This seems reasonable by combining ontology
information and sequence information and our method can find more
biological protein complexes.

3.5. The robustness of the algorithm CSeq-GO to the different
thresholds

In order to show the robustness of the combination of sequence and
gene ontology information to identify the protein complexes, perfor-
mances of f-measure are illustrated among the different methods with
nine different threshold t = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.
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Fig. 4. Recall performance on MIPS.

Table 1
Performances on benchmark MIPS and CYC2008.

ON MIPS ON CYC2008

C Pm Km C Pm Km

BMA/BP 218 80 54 218 115 75
BMA_BP 236 73 52 236 106 69
BMA/CC 207 74 50 207 110 69
BMA_CC 214 68 45 214 102 65
BMA/MF 190 78 54 190 114 94
BMA_MF 210 74 52 210 103 70
CFinder 112 26 28 112 42 41
MCODE 40 14 19 40 16 23
MCL 265 35 39 265 55 60
COACH 639 149 73 639 196 100
L 545 145 67 545 187 91
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Fig. 5. Comparisons on MIPS.
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Fig. 6. Comparisons on CYC2008.
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Fig. 7 shows the relative performances of the compared methods on the
MIPS benchmark and it illustrates that the six methods follow the same
trend: the performance of f-measure decreases with t increasing. The
performances of BMA_BP, BMA_CC, BMA_MF are better than
CFinder, MCODE and MCL in terms of f-measure with the exception
CFinder by t=0.7. Fig. 8 also shows the similar trend as Fig. 7. The
results demonstrate the advantages of our method on the improvement
of the identification performances. Going by ontology information from
protein functional information is helpful and the combination of the
two biological features can improve the detection of the clusters
efficiently.

3.6. The functional analysis of our method

High functional homogeneity often is exhibited in known protein
complexes (Bu et al., 2003; Przulj et al., 2004). To prove the biological
functional significance of the detected clusters, p-value is calculated,
which represents the probability of co-occurrence of proteins with
common function (Maraziotis et al., 2007). P-value is based on hyper
geometric distribution and has been used to assign each detected
cluster to a main functional group. Low p-values indicate that proteins
in the complex do not occur only by chance and the complex has
statistical significance. In our paper, p-values are calculated by the tool
Go::termFinder (Boyle et al., 2004) which is defined in Eq. (13), where
N is the size of the whole network, C is the size of the detected cluster, F
is the size of the functional group and k is the number of the proteins of

the functional group in the detected clusters. The smallest p-value
corresponding to each complex with size ≥7 is shown in Table 2. All of
these predicted clusters match well with known functional categories
with corrected p-value ≤0.01.

∑P = 1 −
( )( )

( )i

k F
i

N F
C i

N
C=0

−1 −
−

(13)

Our method is different from the traditional clustering algorithms,
which mainly employ topological information to partition PPI networks
into clusters and fail to consider protein functional and sequence
information. In this background, we get insight into the clustering
approach by combining amino acid background frequency sequence
information and the topological properties in the weighted graph based
on the gene ontology information. For instance, some detected clusters
shows low P-values and the performance of precision is improved by
reducing the noise data of protein interaction data. Hence, it is possible
to predict the function of uncharacterized proteins from the prediction
of the complexes because proteins in the same complex are likely to
share the same function. Meanwhile, based on the theory, it is helpful
to infer protein functional type. As shown in Fig. 9, the complex with
size 5 is detected by our method, 4 proteins belong to this protein
folding type and match the MIPS complex and an uncharacterized
protein YMR186W is found. We suggest that YMR186W has a protein
folding function because the other proteins in the complex have the
same function.
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Fig. 7. The f-measure comparisons on MIPS.
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Fig. 8. The f-measure comparisons in CYC2008.

Table 2
Some detected protein complexes on MIPS PPI data and their p-values.

Gene name Corrected P-
values

Main Functional group

YBR234C YDL029W YIL062C
YJR065C YJR091C YKL013C
YLR370C YNR035C

5.28e−18 Arp2/3 complex-mediated
actin nucleation

YDL145C YER122C YFR051C
YGL137W YIL004C
YIL076W YLR078C
YLR268W YPL010W

2.63e−17 retrograde vesicle-mediated
transport, Golgi to ER

YBR087W YJR068W YMR078C
YNL290W YOL094C
YOR144C YOR217W

9.94e−12 leading strand elongation

YAL021C YCR093W YDL165W
YER068W YIL128W
YNL288W YNR052C
YPR072W

2.76e−13 positive regulation of DNA-
templated transcription,
elongation

YAR003W YBR175W YBR258C
YDR140W YDR469W
YHR119W YKL018W
YLR015W YPL138C

2.33e−18 protein methylation

Q0085 YBL099W YDR298C
YDR377W YJR121W
YKL016C YML081C-A
YPL078C

4.66e−20 ATP synthesis coupled
proton transport

Fig. 9. One predicted example.
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4. Conclusion

In this study, a new approach was proposed to detect protein
modules in the weighted graph based on the semantic similarity of GO
terms. After the term-based similarity measures were used to measure
the semantic similarities of protein pairs, six kinds of the weighted
graphs were constructed and were applied to the detection algorithm to
cluster proteins. Density, diameter and the included angle cosine was
adopted as the update conditions and the evaluations were conducted
on both yeast complexes datasets. The experimental results show that
the combination of the two biological information can generally per-
form better than the five traditional methods in forms of recall and f-
measure, which provides a framework to predict protein complex and
also can be helpful to other network community studies. What is more
valuable is that this method can be extended to other types of biological
information to study the biological network. Future work will also
include investigating other biological information, such as structural
properties.
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