中国科学院沈阳自动化研究所机构知识库
Advanced  
SIA OpenIR  > 光电信息技术研究室  > 期刊论文
题名:
基于深度学习的目标跟踪方法研究现状与展望
其他题名: Status and prospect of target tracking based on deep learning
作者: 罗海波; 许凌云; 惠斌; 常铮
作者部门: 光电信息技术研究室
通讯作者: 罗海波
关键词: 目标跟踪 ; 深度学习 ; 计算机视觉 ; 精确制导
刊名: 红外与激光工程
ISSN号: 1007-2276
出版日期: 2017
卷号: 46, 期号:5, 页码:14-20
产权排序: 1
项目资助者: 总装预研项目(51301030108)
摘要: 目标跟踪是计算机视觉领域的重要研究方向之一,在精确制导、智能视频监控、人机交互、机器人导航、公共安全等领域有着重要的作用。目标跟踪的基本问题是在一个视频或图像序列中选择感兴趣的目标,在接下来的连续帧中,找到该目标的准确位置并形成其运动轨迹。目标跟踪是一个颇具挑战性的问题,目标的非刚性变化往往改变了目标的表观模型,同时复杂的光照变化、目标与场景间的遮挡、背景中相似物体的干扰和摄像机的抖动等使目标跟踪任务变得更加困难。近年来,随着深度学习在目标检测和识别等领域中取得巨大的突破,许多学者开始将深度学习模型引入到目标跟踪中,并在一系列数据评测集上取得了优于传统方法的性能,逐渐开启了目标跟踪领域的新篇章...
英文摘要: The inverse synthetic aperture lidar (ISAL) have attracted increasing attention for its merits including small visual tracking which is considered as one of the important research topics in the field of computer vision due to its key role in versatile applications, such as precision guidance, intelligent video surveillance, human -computer interaction, robot navigation and public safety. The basic idea for implementing visual tracking is composed of finding the target object in a video or sequence of images, then determining its exact position in the next successive frames and finally generating the corresponding trajectory of this object. Visual tracking, however, is still a challenging problem in practice while taking into account the abrupt appearance changes of the target objects induced by their non-rigid transformation, the sophisticated lighting variation, the obstruction by the block or similar objects in the background and the camera jitter. Motivated by the successful applications in target detection and recognition in recent years, plenty of deep learning models have been integrated in the visual tracking and better performance over traditional methods was achieved in a series of data evaluations, which opens a new door in the field of visual tracking. In this paper, the overview and progress on visual tracking were summarized. The current challenges and corresponding solving approaches in this field are introduced firstly and in particular, several novel and mainstream visual tracking algorithms based on the deep learning are specially described and analyzed in details, including their basic ideas, advantages and disadvantages and future prospect.
语种: 中文
内容类型: 期刊论文
URI标识: http://ir.sia.cn/handle/173321/20771
Appears in Collections:光电信息技术研究室_期刊论文

Files in This Item: Download All
File Name/ File Size Content Type Version Access License
基于深度学习的目标跟踪方法研究现状与展望.pdf(1001KB)期刊论文作者接受稿开放获取View Download

Recommended Citation:
罗海波,许凌云,惠斌,等. 基于深度学习的目标跟踪方法研究现状与展望[J]. 红外与激光工程,2017,46(5):14-20.
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[罗海波]'s Articles
[许凌云]'s Articles
[惠斌]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[罗海波]‘s Articles
[许凌云]‘s Articles
[惠斌]‘s Articles
Related Copyright Policies
Null
Social Bookmarking
Add to CiteULike Add to Connotea Add to Del.icio.us Add to Digg Add to Reddit
文件名: 基于深度学习的目标跟踪方法研究现状与展望.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 
评注功能仅针对注册用户开放,请您登录
您对该条目有什么异议,请填写以下表单,管理员会尽快联系您。
内 容:
Email:  *
单位:
验证码:   刷新
您在IR的使用过程中有什么好的想法或者建议可以反馈给我们。
标 题:
 *
内 容:
Email:  *
验证码:   刷新

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.

 

 

Valid XHTML 1.0!
Copyright © 2007-2017  中国科学院沈阳自动化研究所 - Feedback
Powered by CSpace