中国科学院沈阳自动化研究所机构知识库
Advanced  
SIA OpenIR  > 机器人学研究室  > 期刊论文
题名:
弱纹理环境双目视觉稠密视差鲁棒估计方法
其他题名: Robust estimation method for dense disparity of binocular vision under textureless environment
作者: 杜英魁; 刘成; 田丹; 韩晓微; 原忠虎
作者部门: 机器人学研究室
通讯作者: 杜英魁
关键词: 弱纹理环境 ; 双目视觉 ; 视差估计 ; 置信度传播 ; 参数空间投票
刊名: 光学精密工程
ISSN号: 1004-924X
出版日期: 2017
卷号: 25, 期号:4, 页码:554-562
收录类别: EI
产权排序: 2
项目资助者: 辽宁省高等学校创新团队资助项目(LT2013024) ; 机器人学国家重点实验室开放基金资助项目(2015008) ; 辽宁省自然科学基金资助项目(2015020158) ; 辽宁省博士科研启动基金项目(201601213)
摘要: 精确稠密视差估计是立体视觉系统恢复观测场景三维信息的关键。从立体视觉在机器人环境感知的实际应用角度出发,提出了对于弱纹理、阴影和遮挡等关键影响因素,具有良好鲁棒性、精度和处理速度的稠密视差图估计算法。针对弱纹理、阴影和深度不连续的问题,设计了基于灰度相似度概率的置信度传播算法,结合视差平滑约束,以期实现较高精度的视差初值快速估计。由视差级数定义的消息向量通过异向平行迭代进行传播,消息向量包含表征像素点灰度相似性和平滑性的能量信息,通过全局能量函数的迭代收敛,快速获得视差初始估计。根据独立连通区域通常具有相似纹理特征和视差一致性的先验知识,提出了基于Mean-Shift聚类分割算法和参数空间投票...
英文摘要: Precise dense disparity estimation is the key for stereo visual system to recover three-dimensional information of observation scene. From practical application perspective of stereo vision in robot environment perception, a dense disparity figure estimation algorithm having good robustness, accuracy and processing speed to key influence factors (texturelessness, shadow and blocking etc.) was proposed. Aimed at texturelessness, shadow and uncontinuous, belief propagation algorithm based on gray-scale similarity probability had been designed to realize rapid and accurate estimation of initial value of disparity by combining with disparity smoothness constraint. The message vector defined by disparity class was propagated through anisotropic diffusion and parallel iteration. Message vector included energy information representing gray-scale similarity and smoothness of pixel point. Initial estimation of disparity could be gained rapidly through iteration convergence of global energy function. According to the priori knowledge that independent connected area generally had similar textural features and disparity conformance, parameter space voting self-adaption disparity approximation surface estimation algorithm on the basis of Mean-Shift clustering partitioning algorithm was proposed to perform fine optimization estimation of dense disparity. 5 groups of standard test image having different textureless features, 4 groups of actual image under indoor environment, 4 groups of actual image under outdoor environment and 4 groups of actual environment image under special lighting environment through selenographic simulation were utilized to perform test experiment and experimental result shows that the proposed algorithm has good robustness and effectiveness. © 2017, Science Press.
语种: 中文
EI收录号: 20172703864508
内容类型: 期刊论文
URI标识: http://ir.sia.cn/handle/173321/20775
Appears in Collections:机器人学研究室_期刊论文

Files in This Item: Download All
File Name/ File Size Content Type Version Access License
弱纹理环境双目视觉稠密视差鲁棒估计方法.pdf(614KB)期刊论文作者接受稿开放获取View Download

Recommended Citation:
杜英魁,刘成,田丹,等. 弱纹理环境双目视觉稠密视差鲁棒估计方法[J]. 光学精密工程,2017,25(4):554-562.
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[杜英魁]'s Articles
[刘成]'s Articles
[田丹]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[杜英魁]‘s Articles
[刘成]‘s Articles
[田丹]‘s Articles
Related Copyright Policies
Null
Social Bookmarking
Add to CiteULike Add to Connotea Add to Del.icio.us Add to Digg Add to Reddit
文件名: 弱纹理环境双目视觉稠密视差鲁棒估计方法.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 
评注功能仅针对注册用户开放,请您登录
您对该条目有什么异议,请填写以下表单,管理员会尽快联系您。
内 容:
Email:  *
单位:
验证码:   刷新
您在IR的使用过程中有什么好的想法或者建议可以反馈给我们。
标 题:
 *
内 容:
Email:  *
验证码:   刷新

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.

 

 

Valid XHTML 1.0!
Copyright © 2007-2017  中国科学院沈阳自动化研究所 - Feedback
Powered by CSpace