SIA OpenIR  > 机器人学研究室
旋翼飞行机械臂建模控制及规划方法研究
Alternative TitleModeling, Control and Planning of An Aerial Manipulator
张广玉1,2
Department机器人学研究室
Thesis Advisor刘光军 ; 何玉庆
Keyword旋翼飞行机械臂 动力学建模 抗扰动鲁棒控制 时间最优轨迹规划
Pages116页
Degree Discipline机械电子工程
Degree Name博士
2019-05-25
Degree Grantor中国科学院沈阳自动化研究所
Place of Conferral沈阳
Abstract本文以动态目标物捕获任务作为应用背景,针对旋翼飞行机械臂系统建模和控制、动态目标物捕获作业过程中的轨迹规划以及旋翼飞行机械臂系统设计展开研究。主要研究内容如下:首先,针对机械臂在作业运动过程中的耦合作用对旋翼无人机动力学影响,提出了基于系统可变惯性参数(质心和转动惯量)的飞行动力学建模方法。由于机械臂的运动会改变整个系统的质量分布,因此,系统的惯性参数变化量能够反映出机械臂的运动。在系统飞行动力学建模时可以引入惯性参数变化量以描述机械臂的运动对旋翼无人机动力学的影响。其次,针对旋翼飞行机械臂系统稳定飞行控制问题,设计了扰动补偿H∞ 鲁棒控制器。该控制器由扰动补偿器和H∞ 鲁棒控制器组成。其中,扰动补偿器用于消除机械臂扰动的影响,用于补偿的扰动力是基于动力学模型中惯性参数变化量和与旋翼无人机的状态耦合项估计而来。H∞鲁棒控制器用于保证扰动估计存在误差时系统的输入输出稳定性。针对旋翼飞行机械臂末端控制问题,设计了基于旋翼飞行机械臂逆运动学的机械臂末端控制器,以补偿旋翼无人机的浮动对的机械臂末端的影响。再次,针对旋翼飞行机械臂的动态目标物捕获任务,提出了基于诱导时间最优模型预测控制,即GTO-MPC(Guidance Time Optimal Mode Predictive Control),的飞行轨迹实时规划方法。该算法通过宽松约束条件下时间最优轨迹的引导,利用MPC的滚动优化策略,可以在每个控制周期内利用反馈信息实时求解时间最短的目标物追逐轨迹。针对追逐过程中环境中的障碍物,提出了一种用动态线性约束表示障碍物的方法,以提高障碍物约束下轨迹求解的效率。结合障碍物的动态线性约束,GTO-MPC 可以实时地求解出具有障碍物避碰能力的时间最优的目标物追逐轨迹。最后,针对旋翼飞行机械臂系统设计,面向抓取作业任务设计并搭建由六旋翼无人机,七自由度轻质机械臂和欠驱动柔顺手爪组成的旋翼飞行机械臂系统。该系统能够完成对地面移动目标物的自主抓取任务。本文的研究工作包括了旋翼飞行机械臂系统建模、控制、动态目标物捕获作业过程中的轨迹规划以及系统设计四方面的内容。仿真和实际系统实验结果验证了本文提出的方法的有效性。
Other AbstractThis paper focus on modeling, control, trajectory planning in dynamic target catching and system design of the aerial manipulator. The main research contents are as follows: Firstly, for the coupling of the moving robotic arm effect on the dynamic of the UAV, a flight dynamic model of the aerial manipulator based on variable inertial parameters (center of mass and moment of inertia) is proposed. The mass distribution of the whole aerial manipulator system could be changed due to the movement of the robotic arm. So, the motion of the robotic arm can be represented by the increment of the CoM (Center of Mass) and the inertia matrix of the system. So, the variable inertial parameters is used in flight dynamic model to describe the effect of the movement of the robotic arm. Secondly, for the aerial manipulator’s steady flight control, a disturbance compensation H∞ robust controller is designed which is composed of a disturbance compensator and a H∞ controller. The disturbance compensator is used to eliminate the disturbance of the robotic arm by compensating the estimated disturbance which is estimated based on coupling terms of the increment of inertia parameters and the states of the UAV. The H∞ controller is used to ensure the input-output stability of the system for the error of the estimated disturbance. For the aerial manipulator’s end-effector control, a controller based on the inverse kinematics of the aerial manipulator is designed, which can eliminate the influence of floating the UAV on the end-effector of the robotic arm. Thirdly, toward dynamic target catching tasks, an algorithm named GTO-MPC (Guidance Time Optimal Mode Predictive Control) is proposed to planning the flying trajectory of the aerial manipulator in real time. Based on the receding-horizon optimization strategy, the GTO-MPC can generate time optimal trajectory in every control cycle under the guidance of the time optimal trajectory in the relaxing constrains of the system. In order to avoid obstacles in the pursuing path, a dynamic linear constrain of the obstacle is also presented in this paper, which can improve the computationally efficient. Combining with the dynamic linear constrain of the obstacle, the GTO-MPC can generated a trajectory in real time that can avoid obstacle reactively while catching up with the target in the minimum time. Lastly, toward target grasping tasks, an aerial manipulator system is designed, which is composed of a hex-rotor, a 7 DoF (Degree of Freedom) light weight robotic arm and an under-actuated compliant gripper. The aerial manipulator can compete tasks of target grasp, while the target is moving on the grand. This paper focus on modeling, control, trajectory planning in dynamic target catching and system design of the aerial manipulator. The feasibility and validity of the proposed methods are validated by simulations and experiments in the real platform.
Language中文
Contribution Rank1
Document Type学位论文
Identifierhttp://ir.sia.cn/handle/173321/25153
Collection机器人学研究室
Affiliation1.中国科学院沈阳自动化研究所
2.中国科学院大学
Recommended Citation
GB/T 7714
张广玉. 旋翼飞行机械臂建模控制及规划方法研究[D]. 沈阳. 中国科学院沈阳自动化研究所,2019.
Files in This Item:
File Name/Size DocType Version Access License
旋翼飞行机械臂建模控制及规划方法研究.p(7301KB)学位论文 开放获取CC BY-NC-SAApplication Full Text
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[张广玉]'s Articles
Baidu academic
Similar articles in Baidu academic
[张广玉]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[张广玉]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.